
Probabilistic Methods in Combinatorics

Solutions to Assignment 12

Problem 1. Let G = (V,E) be a graph with maximum degree ∆. Show that there exists

a colouring of the vertices of G with at most 100∆4 colours such that, for each vertex v, no

two vertices in N(v) have same colour.

Solution. We independently give to each vertex v ∈ V a colour uniformly at random in

the set {1, . . . , 100∆4}. Let Av be the probability that at least two vertices in N(v) have

same colour. We have

P(Av) ≤ 1−
∆∏
i=1

(1− i

100∆4
) ≤ 1− exp

(
−2∆(∆ + 1)

100∆4

)
≤ 1

25∆2
.

Every event Av is mutually independent from all events Au such that |N [u] ∩ N [v]| = 0.

Therefore, Av is mutually independent of a collection of all but at most ∆ + ∆2 events Au.

As

e(∆2 +∆+ 1)
1

25∆2
≤ 1,

a simple application of LLL concludes the proof.

Problem 2. Let A = (A1, A2, . . . , An) and B = (B1, B2, . . . , Bn) be two sequences over a

finite alphabet Σ. A common subsequence of A and B is a sequence (C1, C2, . . . , Ck) such

that C1, . . . , Ck appear in A in order (not necessarily contiguously), and C1, . . . , Ck appear

in B in order (again, not necessarily contiguously). The Longest Common Subsequence

(LCS) of A and B is a common subsequence of A and B of maximum possible length.

Let A = (A1, A2, . . . , An) and B = (B1, B2, . . . , Bn) be two independent uniformly random

sequences of length n over the alphabet {0, 1}. Let L be the LCS of A and B. Show that

P(|L− E[L]| ≥ 100
√
n) ≤ 1/100.

Solution. Let Ω =
∏2n

i=1Ωi, where Ωi = {0, 1}, and the Ωi for 1 ≤ i ≤ n represents A,

and the Ωi for n + 1 ≤ i ≤ 2n represents B. Note that L is 1-Lipschitz with respect to the
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product probability space Ω. Therefore an application of Azuma-Hoeffding gives

P(|L− E[L]| ≥ 100
√
n) ≤ exp

(
−(100

√
n)2

4n

)
≤ 1/100,

as wanted.

Problem 3. Let Gi = (V,Ei) for i = 1, 2 be two graphs on same vertex set, and let ei = |Ei|
for i = 1, 2. Show that there exists a partition V = X ∪ Y such that the number of cross

edges (i.e. having exactly one endpoint in X and Y ) in Gi is at least ei/2− 10
√
ei for each

i = 1, 2.

Solution. Let X ∪ Y be a uniform random partition of V , that is, for every v ∈ V , we

put v in X with probability 1/2, and in Y with probability 1/2, independently of the other

vertices. Let Zi be the number of cross edges in Gi. We have E[Zi] = ei/2, and if e, f ∈ Ei,

then

P(e, f are cross edges) =

1/2 if e = f,

1/4 if e ̸= f.

Thus, Var[Zi] =
∑

e∈Ei
1/2− 1/4 = ei/4. Therefore, by Chebychev’s inequality:

P(Zi − ei/2 ≤ −10
√
ei) ≤ P(|Zi − E[Zi]| ≥ 2

√
Var[Zi]) ≤ 1/4.

A simple union bound over i = 1, 2, then shows that there exists a partition X ∪Y such that

Zi ≥ ei/2− 10
√
ei for i = 1, 2.

Problem 4. Let G = (V,E) be the graph whose vertices are all 7n vectors of length n over

Z7, in which two vertices are adjacent if and only if they differ in precisely one coordinate.

Let U ⊆ V be a set of 7n−1 vertices of G, and let W be the set of all vertices of G whose

distance from U exceeds (c+ 2)
√
n, where c > 0 is a constant. Prove that |W | ≤ 7n · e−c2/2.

Solution. Choose a random vector y ∈ Zn
7 as follows: for each coordinate i independently,

let yi = 0, 1, . . . , 6 with equal probability 1/7. Note that this implies that every point of Zn
7

is equally likely to be chosen.

Define the random variable Y as the distance of the randomly chosen point y to U .

Observe that Y = 0 if and only if y ∈ U , thus, since the distribution is uniform, P(Y = 0) =
|U |
|V | = 1/7.

Moreover, we have Y > (c + 2)
√
n if and only if y ∈ W . Hence, our goal is to show that
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P(Y > (c+ 2)
√
n) ≤ e−c2/2.

Since changing one coordinate of y can change its distance to any point by at most 1, we

have that Y is 1-Lipschitz. Thus, by the Azuma-Hoeffding inequality,

P(Y − E[Y ] < −t
√
n) < e−t2/2 (1)

and

P(Y − E[Y ] > t
√
n) < e−t2/2 (2)

for any t > 0.

Taking t = 2 in (1) gives

P(Y < E[Y ]− 2
√
n) < e−2 < 1/7.

Since P(Y = 0) = 1/7, we must have E[Y ] ≤ 2
√
n.

Taking t = c in (2) now gives

P(Y > (c+ 2)
√
n) ≤ P(Y > E[Y ] + c

√
n) < e−c2/2.
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